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ABSTRACT 

We compute, at the one-loop level, the effective ootential for 

pure gravity in a Kaluza-Klein background geometry which is the direct 

product of four-dimensional Minkowski soacetime M4 with the N-sphere 

SN , N odd. The computation is performed in the physical Lorentz- 

signature soacetime, avoiding the difficulties of "Euclideanization". 

%'e find that the contribution of each gravitational degree of freedom 

to the O(A) part of the effective potential is significantly greater 

than that of a scalar or spinor in the same background geometry. No 

stable minima of the effective potential exist for 3 i N s 13. 

Geometries which may be interpreted as "unstable solutions" are found 

for all N from 3 through 13. These results, obtained in Lorentz- 

signature spacetimes, differ from those obtained by "Euclideanization"; 

our "Euclideanized" results agree with those obtained by Chodos 

and Myers using a different regularization scheme. 
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I. Introduction 

In the Kaluza-Klein approach to the unification of gauge forces 

with gravity [l], it is gravity (or its supersymmetric extension) which 

is the elementary entity; not, however, "gravity" in the usual sense of 

"the manifestation of the curvature of four-dimensional spacetime". 

Rather, the basic field in a Kaluza-Klein theory is the metric tensor 

of a spacetime with some number N of "extra" dimensions above and beyond 

the familiar four. For this (4+N)-dimensional~ metric tensor to give 

rise to an effective theory of four-dimensional gravity coupled to four- 

dimensional gauge fields, it is necessary that the background geometry 

of the (4+N)-dimensional spacetime have, at least locally, the structure 

of the direct product of a four-dimensional spacetime with an N-dimensional 

compact space, henceforth referred to as the "internal space". For the 

effective four-dimensional Yang-Mills coupling constants to have their 

observed values (i.e., of order unity) the characteristic length scale 

L of the internal space must be comparable to and somewhat larger than 

the Planck length [2] 

Lp = G' z 1.61~5 x 10-93 cm . (1.1) 

where G is Newton's constant. (In Kaluza-Klein theories, gauge coup- 

lings are proportional to Lp/L [ 31.) We are therefore led to,search 

for dynamically consistent "Kaluza-Klein spacetimes", i.e., spacetimes 

with metrics satisfying the Einstein equation, and which have the desired 

product structure and internal scale. 
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An interesting spacetime of this sort has been studied by 

Candelas and Weinberg [4]. In their model, the background geometry 

has the form M4 @ S N , where M" is four-dimensional Minkowski spacetime 

and SN is the N-dimensional sphere. The fields in the model are, in 

addition to the (4+N)-dimensional metric tensor gMN, nb real scalar 

fields and nf Dirac spinor fields. These matter fields have zero 

vacuum expectation values. Therefore, at the classical level (i.e., 

ignoring all effects proportional to Planck's constant R), the matter 

fields produce no stress-energy, and the classical Einstein equation 

is simply 

G,,,N = + K g),N I (1.2) 

where GFIN is the (4+N)-dimensional Einstein tensor constructed from 

gMN, and i is the (4+N)-dimensional cosmological constant. One can 

verify that, except for N =l and fi =O. M'e SN is not a solution to - 

(1.2) for any values of ,T and the radius r of S!. 

It is known, however, that one-loop quantum effects can drastically 

alter the nature of the Einstein equation, and its solution, in Kaluza- 

Klein spacetimes. For example, the original' Kaluza-Klein spacetime, 

M" m S1, satisfies the classical Einstein equation (1.2) with i-0; 

one-loop effects of mas.sless boson or fermion fields, including the 

gravitational field, destabilize this solution [5,6], causing the circle 

S1 to contract or expand in much the same way that two plane parallel 

conducting plates are drawn together by virtue of the vacuum energy of 

the quantized electromagnetic field. It was the suggestion of Weinberg 

[3 ] that, in a Kaluza-Klein spacetime with a curved internal space 
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(and thus at least two extra dimensions) quantum effects could be counter- 

balanced by classical curvature effects, yielding a stable equilibrium 

size of O(Lp) for the internal space without the introduction of arbi- 

trary parameters. 

In calculating the quantum corrections to (1.2) Candelas and 

Weinberg ignore the contribution of the degrees of freedom of the 

quantized gravitational field (gravitons), arguing that nb and nf can 

always be chosen sufficiently large for graviton effects to be negli- 

gible compared with quantum effects of scalars and spinors. The rele- 

vant geometrodynamical equation for the Candelas-Weinberg model is thus 

GMN = ; i gMN - 8nfi TMN , (1.3) 

where TMN is the effective stress energy of the quantized scalar and 

spinor fields, and 5 is the (4+N)-dimensional Newton constant. ,! is 

fine-tuned to ensure the compatibility of (1.3) with the flat M' sub- 

space; the radius r of the internal space is then fixed by (1.3). 

Candelas and Weinberg find that the numerical coefficients which 

determine the contribution of each scalar or spinor degree of freedom 

to TMN turn out to be "unreasonably" small; e.g., s 10m5 for N=7, 

rather than Q 1 as might be anticipated for dimensionless factors. This 

is significant on several counts. In the first place, quite apart from 

the requirement that gauge couplings be of the correct magnitude, the 

size of the internal space must be larger than Lp in order for the loop 

expansion to make sense [7]. Due to the smallness of the afore- 

mentioned coefficients, ~10' species of matter fields are needed to 
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obtain an internal space which is "large enough". Secondly, the anoma- 

lous smallness of the contribution of scalars and spinors to TMN leads 

us to wonder whether gravitons can indeed be neglected; perhaps their 

contribution to TMN is "reasonable". 

There is another reason why computation of the graviton contribu- 

tion to TMh in the context of the Candelas-Weinberg model.is of interest; 

namely, as a "warm-up" for the study of quantum effects in Kaluza-Klein 

theories which incorporate supergravity [8,25]. Such theories have, 

Potentially, the advantage of predicting the total number of dimensions 

of spacetime, as well as the split between the internal dimensions and 

the rest. However, in supergravity, the number of matter fields cannot 

be made arbitrarily larpe, or,indeed,varied at all; it is fixed once 

and for all by 'the requirement of supersymmetry. 

In the present paper, then, we compute the O(h) effects of gravi- 

tons (in the absence of any matter fields) in the background geometry 

M' e SN, using the effective-potential technique. The paper is organized 

as follows: In section II we diagonalize the quadratic part of the 

classical action, and obtain a formal expression for the effective poten- 

tial. In section III this formal expression is regularized by the zeta- 

function method, yielding explicit numerical values for the effective 

potential as a function of the radius of SN and the cosmological con- 

stant. k present our results in SeCtiOn IV. The application of the 

path integral formalism to one-loop quantum gravity in Lorentzian- 

signature spacetimes is discussed in aopendices A and B, with oarticular 

attention paid to the problem of neqative eiqenvalues. We comoare our 

results with those of Chodos and Piyers [17,33] in appendix A. 
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II. Computation of the Effective Potential 

Let us begin our analysis by specifying only that we are workinq 

in a D-dimensional spacetime with coordinates z A,A=Ol I ,..., D-l. As 

the classical action for the gravitational field on this manifold we 

take the D-dimensional Einstein action*, with cosmoloqical constant i: 

S[gABl = -& / do, m[R+i! . (2.1) 

g is the determinant of the O-dimensional metric tensor gAB, and R is 

the Ricci scalar formed from gAB. E is the bare D-dimensional Newton 

constant with dimensions of (length)(D-2). The effective action r cor- 

responding to (2.1) is, to first order in Planck's constant [9,10] 

r[iABl = s[iABl + rO[iAB! 3 (2.2a) 

where : Q is defined by 

eirQ[iABl 
= / UhAB e 

is2[iAB3hABl 
(2.2b) 

S2[iAB,hAB] is obtained from S[g,,] by writing pAB in (2.1) as the sum 

of a background metric, iAB , and a deviation from this background, hAB: 

gAB = GAB ' hAB . 

S2[iAB,hAB] is the part of S[iAB+hAB] quadratic in hAB: 

(2.3) 

S2[iAB,hABl = + j dDz hAB $BCD(‘?,&hco 9 (2.4) 

*Our differential-geometric conventions are those of ref.[4], which are 
identical to those of ref.[l5] except with regard to the normalization 
of the cosmolo ical 

d 
constant. Unless otherwise specified, Planck's con- 

stant Ii = spee of light c=l. 
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where SfBCD is the operator 

(2.5) 

Factoring out and discarding, in the usual manner, the infinite constant 

due to gauge invariance [p,IO,ll], (2.2b) becomes 

ef’~[iABl 
= / UhAB e 

i &[iAB phAB] j ovADVl eisghr%B"AavA1 
I 

(2.6) 

where 

s2&,,h,,l = S$i,qB,hABl + s g-f["AB'hAB] * (2.7) 

S 
9-f is the gauge-fixing term, also quadratic in hAB, so S2f is also 

of the form 

S2f[FjAB,hABl = ; ( dDz hA,j $fcD&,,,&~ * 

% 
is the ghost action appropriate to S g-f: 

sg,,[~AB.vA&,l = ; 1 dDz ~AS$!jAB)VB . 

(2.8) 

(2.9) 

The Feynman-Dewitt-Faddeev-Popov ghosts vA,VB are anticommuting 

c-number (Grassmann) valued vector fields. 

The actual configuration the field iAB assumes is that configura- 

tion which extremizes the effective action T; i.e., that iAB for which 

6rCGABl o 
= . 

@AB 

(2.10) 
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The physical interpretation of gA8 satisfying (2.10) is: 

!& = <o+liABl”-> ’ (2.11) 

That is, iAB is the matrix element of the quantum metric-tensor operator 

between the groundstate (state of least energy) at time t-- -, IO->, 

and the groundstate at time t+++, IO+>. 

Using (2.8) and (2.9) in (2.6) 

eirQ[gMN1 = , 
DhAB eXP c ; i d'z h/,B ~;~cD(g,,hc,,l 

- ( OiAUVA exp r i 1 dDz iA $(SM,)VB1 . (2.12) 

Formulas for the evaluation of path integrals of the form of those ap- 

pearing in (2.12) are given in appendix A. To apply these formulas, we 

must know the eigenvalue spectra of the operators S2f ^ABCD($iN) and $E(iMN); 

indeed, since the equation of motion (2.10) for gAB reauires that r[gAB] 

be stationary under arbitrary variations of iAB, we should, in principle, 

determine the spectra of S;?" - (gMN) and S$'(iMN) for arbitrary gMN. 

In practice, we opt for the more mathematically-tractable procedure 

of assuming in advance that the background metric which extremizes r 

will belong to a subclass of all possible metrics. In the present 

paper, we shall assume that jMN is the metric tensor of the one-parameter 

class of spacetimes of the form M" @ SN; the parameter which distinguishes 

different members of this class is just the radius of SN. 
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The advantage of this "ansatz approach" is, of course, that it 

makes possible the computation of the necessary eigenvalues. The dis- 

advantages are twofold: 

1) Since we only obtain r corresponding to backgrounds in a restricted 

subclass, we can only evaluate the variation of r within this subclass. 

In the case at hand, r will be a function of r, and will determine 

the physical value of r via the equation which states that T is sta- 

tionary under a small variation of r about its physical value, 

=o . (2.13a) 

The manifold M" @ SN with r given by (2.13a) is a candidate 

physical background. Further work is then needed to show that T is 

stationary under all other possible small variations of the background, 

i.e., that (2.10) is satisfied. 

Aside from changes in r, there are other variations in the back- 

ground metric which will keep it within the subclass of metrics 

M" @ SN; namely, those which leave SN unchanged and take M" into itself 

("special conformal transformations"), including, e.g., uniform dilations. 

r must be stationary under these transformations as well. As shown 

in t-41, this requirement leads to the condition 

r(r) =o . 
r=rphysical 

(2.13b) 
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2) It may turn out that "0 metric in the subclass extremizes :, even 

with respect to the single parameter r. This is precisely the case 

for all the values of N we deal with in the present work. This result 

is discussed in section IV. 

We now obtain the eigenspectra required to compute (2.12). For 

arbitrary gAB, the explicit form of the quadratic term S2f defined in 

(2.7) is [12,13,14] 

S&AB,h,qBl = - L 
16~G 

where 

( dD,m {+ hAB[(-d -i- 

+ @AM'BN + 2RAMBN - ]hMN} 

lhMN 5 hMN - ; GYN hAA 

- - 
A)gAMsBN 

(2.14a) 

(2.14b) 

and where 4, RmBN, RBN and i are, respectively, the determinant, Riemann 

tensor, Ricci tensor and Ricci scalar constructed from gAB. (Tensor in- 

dices are lowered and raised using jAB and its inverse matrix iAB). The 

gauge-fixing term used in constructing S2f (see eq.(2.7)) is 

Sg-f[iAB.hABl = - 1 f dDz @-j vA iiAMVB iiBM 
32rrG 

(2.15) 

The ghost action corresponding to this choice of gauge-fixing term is 

'gh[iAB' A' A i VI= _ L ( $2 47 iA(-ijAB.+ fiAB)VB . 
32rrG 

(2.16) 

TO determine the eigenvalues of S2f, we reexpress (2.14) in 

terms of fields linearly related to hAB, so that the resulting 

quadratic form is a sum of squares of 
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the new fields with no cross-terms; the coefficients of the squared 

fields will then be the desired eigenvalues. lde first specialize the 

metric to the case of a product manifold M"@ BN, where M" is n-dimensional 

Minkowski spacetime, and EN is an N-dimensional Riemannian manifold, 

n+N=D. We denote the coordinates of Pi" by x', a=O,l,...,n-I, 

and the coordinates of BN by ya, a=n, n+l,...N-1: 

IA = {xa,ya} . 

The D-dimensional metric tensor takes the form 

&,B(‘) = [ n;B g 4,) ] 
ab 

(2.17) 

(2.18) 

where n cro is the n-dimensional Minkowski metric, and Gab(y) is the 

metric of BN. It is useful to define the projection operators 

(2*lg) 

Using (2.18) and (2.19), we can write hAB as 

hAB = oAB + + 51AB $1 + i !$AB 02 . 

$I and b2 are the traces of hAB over the external (M') and internal 

(BN) indices, respectively, and @ AB is the "doubly-traceless" part of 

hAB: 

$1 = hAB itB (2.21a) 
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$2 = $,B itB 

-AB _ 
@A8 g1 - @A0 g2 

-*B = +A0 $0 = o 

(2.21b) 

(2.21c) 

If the metric is of the form (2.18), the Riemann and Ricci tensors 

are zero unless all of their indices lie in the internal space. If 

the internal metric is that of an N-sphere of radius r, the 

components of Rambn and Rab are [15] 

ii ambn = r -2 (ibm!ian - GmnGab) 

i ab = -re2(N -l)tjab 

and the Ricci scalar is 

f? = -rw2 N(N-1) . 

Using (2.15) and (2.17)-(2.23) in (2.14), and defining 

g z det(i,b) (2.24) 

we find that 

(2.22a) 

(2.22b) 

(2.23) 
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S2f = - 1 jdnxdNy & (+) 
16lG 

{eab[-o + (N(N - 3) +4)r-2 -z]"ab 

+ ~$"~(2)[-0 + (N - 1)2 rm2 - RI@,, 

t $QB[-ot N(N- l)r-2-A]@aB 

t c$,($$)[ q - N(N - l)rs2 + n]$, 

+ ~,c#[O - (N - l)(N -4)rm2 + i]i2 

+ $l(i)[o - (N - l)(N - 2)rm2 + i\l$, 

+ b2($)[o - (N- l)(N-2)r-2 + .;]@,I . (2.25) 

The d'Alembertian which appears in (2.25) is the d'Alembertian 

for the total soacetime M" 8 SN: 

0 = VAO, = v”, f vava ) (2.26) 

where Vaocl is the d'Alembertian on M" and VaVa is the d'Alembertian on 

SN. To diagonalize this operator we expand each of the fields @ab, @ab, 

$ aB, $1 and e2 in terms of harmonics, as follows: 

1) @ab(x'Y) = j& 1 d"k 

ik,x'l 

CT(j.k ) e H(j)(y) 
u (2np/2 ab 

(2.27) 

where Hi:)(y) is the jth symmetric traceless tensor harmonic on the 

N-sphere, satisfying 
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VaV a H$) = "jj)Hab (2.28) 

and 

(dNy 4 H(j)ab H(k) = 6 
ab jk ' (2.29) 

,jj) . .th IS the eigenvalue corresponding to the J symmetric traceless 

tensor harmonic, and 6jk is the Kronecker delta. 

n-l 
2) bab(x,y) = y 1 jd"k CV(j,~,ku)e, -(VI e 

ikuxu 

V(j)(y) (2.30) 
j=l v=O (2lT)"'2 b 

",('I is the uth (j) 
a (constant) basis vector in M", and Vb is an 

N-spherical vector harmonic. 

,ao$w),p) = n(4(“) 
a (2.31) 

vavavp) = ,\jj),p) , (2.32) 

( dNy 4 V(jlaVik) = 6jk (2.33) 

(2.34) 

The dntl) --2-- - 1 constant tensors &i) form a basis for symmetric trace- 

less tensors on M", and S (j)(y) is the jth scalar N-spherical harmonic: 

(2.35) 

(2.36) 
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/dNyJ; 5(j)sck) = 6jk (2.37) 

4) #l(x,~) = : {d"k C,(j,k,,) e 

ik,x" 

j=l (?7)"/2 
s (.j) (y) (2.3t?) 

m 

@2(X*Y) = jil ld"k C2(j,k ) 
e'SkU 

qiij- 
s(j) (y) . (2.39) 

Usinq (2.26) - (2.39), (2.25) becomes 

S 2f = - -& (+) 1 d"k 

jz, C;(,j,kU)CT(j,ku)[kuku - Ap) + (N(N - 3)t4)rq2 - i] 

m n-l * 
' jgl IO C"(j,u,k~)Cv(,i,v,k~)(2)rk~ku-*Si)t("l-1)2r-2-,\1 

d!p -1 
+ 1 z 

j=l j'=l 
Ct(,j,j*,kll)CS(j,j>,ku)[k"k, - ,$j) tN(N - l)r-2 - ;\I 

+ jil ~+(j,ku)~(j,ku)~(,j,k~)~ , (2.40) 

where 

(2.41) 

and M(j,ku) is the 2x2 matrix 

Nj gk,,)ll = (%I[-k'k, + Ap) - N(N-l)r-2t$ (2.42a) 

hf(j ,k,)22 = ($$)[-k"kll + A[j) - (N - l)(N - 4)rm2 + i] (2.42b) 
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where 

na(x,y) = T f d"k q,(j,k,,) e 

ikUxu 
,(j 

j=l (,?Ty7/2 a 
‘XV) (T.4.4) 

u 

‘I,~(x,Y) = jil iii i d”k a,(j,‘J,k,)ebu) ;:lyl,2 s(j)(yj (2.45) 

jif(j ,$,li2 = M(j ,k,)21 

= (I)[-kUk,th&j)-~(N-1)(N-2)r‘2t,~] 
7 (2.42~) 

In a similar manner, the ghost action (2.16) can be written as 

'gh = - L j d"k (j;l 
32~7(;, 

a,(j,k,)u,(j,k,)[k"k, -Ahj) - (N - l)rW2] 

+ j[, Iii a,(j,v,k~)o,(j,w,k,)~kuk~ -.tgj)]j (2.43) 

Performing the path integration, we obtain (see eqs.(2.12), (A.15), 

and (P.El)*) 

ei ro[iMNl = 
N II [k'k, - Ajj) t (N(N-3)+4)rm2-;lef 

kuJ 

. II 
ku,j ," 

[kuk, - !$j) t (Id - 1)2r-2 - i]-* 

- k "j ,iy[kuk,, - Aij) + N(N- l)rm2 - ii]-* 
u’ ’ 

II [m,(,j,k,)m2(j,kU)]-f II /kuku-$i) - (N-l)r-2 1 
$,A 

II /kuku -/I?)/ 

kU J 
(2.46) 

k,, J ,v 

With regard to the absolute values of the ghost eigenvalues in (2.46), see 
footnote following eq.(.t.39). 
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In (2.46), N is an infinite constant independent of r and ,(, and 

ml(j,kU) and m2(j,kU) are the two eigenvalues of the matrix ?l(j,ku) 

in (2.42). \*Je note that we will not change the value of ro[iMN] if 

we replace the product of eigenvalues by a oroduct which has the same 

value for all j and k,,. In what follows, we shall make the re- 

placement 

ml(j,k,,)m2(j,kp) = (w) !k’k,, + cj)(kFLku + 53) (2.47) 

where 

- 2(N - l)rs211 - [l - 2( (2.48) 

(In all the cases we shall consider, the factor in square brackets in 

(2.48) is negative; we take the principal square root.) 

As is customary in dealing with time-independent systems such as 

the one we are concerned with in the present oaner, we define the ouan- 

turn effective potential VQ and the quantum effective ootential density 

3,: 

r. = - V Q = - V. * jd"x . (2.49) 

Note that v. is an ordinary function of r and i. Making use of appendix A 

we see that computation of VQ reauires the construction of the qeneralized 

zeta-function t(s) (see eqs.(A.36), (A.4Q), (A.50) and (A.51)),and the analytic 

continuation of E(s) to the region s ^- 0. To do this, we need to know in 
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detail the values and degeneracies of AT'. (i) ,,L!) 9 23, , and ,(j) s . These have 

been obtained in refs.[16,17]; we summarize here the relevant facts: 

1.) Tensors 

There are three types of symmetric traceless tensor spherical 

harmonic eigenvalues h{,j). They are (for N >- 3): 

a) Transverse-traceless eigenvalues 

*TT 
t.2) = _ k(L+N-I) -2 , 

r2 
f. =2,3,... (2.50) 

with degeneracy 

D (N 2~ = (N+l)(N-2)(s+N)(~-1)(2etN-1)(2tN-3)! . (2 51) 
J, ’ - - . l’(a.+l)! 

b) Longitudinal-transverse eigenvalues 

A(2) = _ Q(P.+N-I)-(N+2) , 
LT r2 

Q=2;3,... 

with degeneracy 

DL(N,l) = L(a.+N-1)(2a.+N-l)(a.+N-3)! 
(N-2)!(a.+lJ! 

c) Longitudinal-longitudinal eigenvalues 

,,@I = _ L(a.+N-l)-2N , 
LL r2 

L=2,3,... 

with degeneracy 

D (N 0) = (2a.+N-l)(e+N-2)! . 
9. .S P.!(N - I)! 

(2.52) 

(2.53) 

(2.54) 

(2.55) 
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2.) Vectors 

There are two types of vector spherical harmonic eigenvalues 

(N > 3): 

a) Transverse eigenvalues 

'TV 
(e) /_ e(a.+N-1)-l , 2E1,2 ,... 

r2 

with degeneracy DQ(N,l) as defined in (2.53). 

b) Longitudinal eigenvalues 

A(E) = _ e(k+N- 1) -(N-I) 
LV r2 

, e=l 2 
, ,... 

(2.56) 

(2.57) 

with degeneracy DQ(N,O) as defined in (2.55). 

3.) Scalars 

The scalar spherical harmonic eigenvalues and their degeneracies 

are well known [36]; the degeneracies are DQ(N,O), and the eiaenvalues 

are 

(2.58) 

Using (2.46)-(2.58) and aopendix A, we find that 

5(‘) = if, ii(‘) + SlO+(‘) +510-(S) -2ip7 r;i(‘) ) (2.59) 

where 

ir2B r(B m c1(s) zv&,E, o,(N,2)le(a.tN-1)tN(N-3)+2-xI-5 
?I 

(2.60) 
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c4(s) z (n) 31 D,(N,l)~~(a.+N-1)tN(N-2)-x~-B 
(2.63) 

c5(s) E ir2n,2 F't (n) ,[1 $(N,o)le(~ 
(4r) 7-i 

+N-l)+(N-l)(N-2) -XI-~ 
(2.64) 

.,c, D,(N,O)la(e+N-l)+N(N-1)-X(-' (2.65) 

c7(s) : =#-fki2 D,(W)/a.(n. 
(4x)"' r s 

tN-l)-NI-a (2.66) 

26 r(l3 a 
c8(s) z --&ALL;, D.#LO)/a.(z+N- 1) -2(N - 111 -' (2.67) 

cg(s) E ir2$2 $fj (n) 6;1 DQ(N,O)IL(t+N- l)l-' (2.68) 
(4n) 

.(E(P.+N-l)t(N-1)(N-2)~2(1-N)[1-&~')-' (2.69) 

We have used the abbreviations 

and 

a-s-$ (2.70) 

X : ir2 . (2.71) 
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In all of the sums (2.60)- (2.68), any term in which the auantity 

within the absolute value signs is zero should be deleted [30]. (That 

is the reason that the Q= 1 term in ~7(s) and the %=O term in ~g(s) do 

not aopear.) 

The third term on the right-hand side of eq.(A.36) for iO may 

be written as 

_ 9 t!-)(o) = _ ; 71 -J- I: a(-ij)ijen" , 
- (41~1"'~ (t)! j 

(2.72) 

where 

i?-)(s) 3 j, cy(51 r (2.73) 

The quantities C,!-)(S), i-l ,...,6, are defined in exactly the same 

manner as the ci(s) in eqs.(2.60) - (2.65), except that the sums run 

only over those values of Q, if any, for which the quantity within the 

absolute value signs is strictly negative. This will always be a 

finite number of terms so s may be set equal to zero directly. 
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III. Analytic Continuation of the Zeta Functions 

We now make another specialization in the class of background 

spacetimes we are investigating: we restrict our considerations to 

spacetimes M"@ SN for which N is odd. We have already restricted the 

values of n to be those for which n ' 
7 1s both integral and even (see 

appendix A). The total number of dimensions O=ntN is therefore odd? 

In an odd number of dimensions there are no odd-loop anomalies [18]; 

this means that the coefficient of the log !i term in (A.36) must 

vanish, i.e., 

i(0) = 0 . (3.1) 

For odd N 2 5 the degeneracy factors DQ(N,2), DQ(N,l) and 

DQ(N,O) can be written as polynomials in a shifted index L: 

DL(L)(N(d,J) = ;$ ;,, L2m+2 s J=O,1,2 , (3.2) 

where 

(3.4) 

and A,,m 
J 

are constants independent of L(see appendix C). For Ii =3, the 

J=2 and J=l degeneracies in (3.2) have an additional term independent of 

L (i.e., m= -1). For the moment we shall consider only the case of odd Nz5. 

Using (3.3) and (3.4), we reexpress each of the zeta functions 

(2.60) - (2.69) as 

* 
The motivation for this restriction is discussed in section IV. 
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Ci(S) = h # di(n) ,L;, D,(L)(N(‘),Ji)IL’ -Yi’I-~ , 
i (3.5) 

m 
i,,&s) = +-# LLv D~(L)WLO)(L’ - Y;,J-’ > (3.6) 

where di(n), Li, Ji, and yi* are given in appendix C. Followinq the pro- 

cedure of ref.[l4] and appendix D of ref.[4], we expand the quantities 

IL2 -yiZI-' and (L* -ylor)-' using the binomial theorem and perform the 

resulting L-sums; for ReB>>O these sums converge. 

We obtain, for i =1,...,9* 

~?r~(25+2r-2m-2) 
1 

+r!;tl wY:Pi(2B+2r-2m-2,Qijj 

(3.7) 

where qi and Qi are as defined in appendix C. c(x) and c(x,y) are the 

Riemann zeta function and modified Riemann zeta function, respectively. 

Any sum in which the upper limit is less than the lower limit his defined 

to be zero. 
Q.-l 

Note that many of the terms in the second sum in (3.7) 

(i.e., Lil ) may be discarded, since, for odd N >- 5, 

*For i=lO,, ILZ-~~'~ * (L*-Y&~) in (3.7) and (3.11). 
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DQw (Fl(v),2) = 0 , L = 0,l ,...,v-2, Ml (3.8) 

DQ(L)(N~~)J) = 0 > L = 0,l ,.*.,v-2, v (3.9) 

DQ(L)(N~~),O) = 0 9 L = 0,l ,...,v-1 (3.10) 

We now Laurent-expand each factor in (3.7) about s =O. 

Cr(s)l-’ = stO(sz) as s + 0, and the terms in the curly brackets are 

either 0(1/s) or O(1) as s+O. Thus, ci(s) is regular at s =O. Since 

we are only interested in ~~(0) and c;(O), we need only keep terms up 

to c)(s) in the Taylor expansion of ii(s) about s-0; this can be written 

as (a(x) z & log?(x)) 

r;i(S) = 
idi 

(4n) n/2,n (1+2slogr) (& 

‘71-l 
. 

i 
,i: 

i 

D~(~)(N(v),J~)IL~ -yiln’* - Lil D,(L)(‘(“)~Ji)lLz-YfIn’2] 

idi 

+i&i=P 
(5) 

- ,i: D,(,)(N(v),Ji)& iLZ-./fln'2[~(1t~)-loglLZ-yfll 
I . 

Q.-i 

- i 
n/2 (-u:/L*)~ 

L=l 
DQ(L)(N(V),Ji)L” Z r=” r!(;nr)! [QW-r) -210gLl 

(-1p Tr -n-5/2-2m+2r $ (lt?tm-r)! ~($+II+~-~) 

(-!j-r)!r! 

- <(3+n+2m-2r) 

+ y (r-f:l)! y:r 
I 5(2r-n-2m-2, Qi) 

11 
+ O(s2) (3.11) 

r=“tl 2 1 
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From (3.11) and appendix C, we discover that 

5i(O) f O I i = 1,2,3,4,5,7,8 . (3.12) 

This may seem distressing, in light of (3.l)...until we recall that 

the theorem "no odd loop anomalies in odd dimensions" is ~a dynamical 

statement, and has relevance only for the zeta function s(s) from which 

the effective potential is actually constructed, not for the individual 

zeta functions si(s) into which we have arbitrarily decomposed i(s). 

Indeed, when the si's are added up to give e(s) using (2.59), (3.1) is 

satisfied for all values of r and 12. This fact serves as a useful 

check on the correctness of our computation. 

Using eqs.(2.72), (2.73), (3.5), and apoendix C, the 

third term in eq.(A.36) for iQ becomes 

e(L)(N(v),Ji)IL*-y:l”‘* , 
I 

(3.13) 

(We remind the reader that sums in which the upper limit is less than 

the lower limit vanish.) 

If N=3 (i.e., v=l) the transverse vector and symmetric 

transverse-traceless tensor deqeneracies are of the form 
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DQ(L)(3,J) = z" A 
,,,=-I Jim .LZm+* 9 J = 1,2 

rather than (3.2). (For J=O, (3.2) still applies.) The only change 

which this difference entails in the formula for the si's is a change 

in the lower limit of the sum on m in (3.7) from 0 to -1 (with 

A o1,-l 5 0). The analytic continuation to a form valid near s =0 also 

proceeds in a slightly different manner: for m= -1, the Laurent expan- 

sion about s =0 of the first summand in square brackets in (3.7) is 

(C--$(l) = Euler's constant = 0.57721566490...) 

r(o+r) 2r Yin 
r. I Yi c(*B+*r) = yjip r- A+; -log (2rr)l + U(s) . (3.15) 

Thus, ci(s), i =1,2,..., 5,7, each have an additional contribution to 

the part which is nonzero at s =O. AS in the case of odd N > 5. these 

nonzero parts vanish when summed to give the comolete t(s). 

The case of N=l has been dealt with previously [17] and will 

not be discussed here. 
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IV. Results and Discussion 

Since the O(1) terms in (3.8) vanish when combined into i(s), the 

relevant part of si(s) is simply the coefficient of the L)(s) term. 

Using (2.59), (3.1), (3.8-!I), (3.13), (A.35), (A.39), and (A.43), me 

can compute the value of the quantum effective potential density V. for 

any values of r and n. v. has the functional form 

(4.la) 

where f(h) and h(X) are real-valued functions of h =Ar2, 

y = $ j%, L;j(O) - i jJ c;(O) (4.lb) 

ih(X) _ i T 1 1 6 qi 
-- - 2 n/2 

r" 'on/2 (;)! r" i=1 
C I di(n) LLL ‘,(L)(N(‘),Ji)IL’-ViI 1 

i 

,irs 2 !.ClO (0) f q. !a)1 . (4.lc) 
t 

Define the total one-loop effective potential V and the corresponding 

density v by 

r = -V = -v j dnx . (4.2) 

Using (2.1), (2.2a), (2.23), (2.49), (4.la), (4.2) and the formula for the 

volume of an N-sphere [19], 
N+l 

we obtain 

(dNy/T=- r 27~~ N 

r(y) ’ 
(4.3) 

N-l 

ij= lT-T 

ar (q-G 
[-N(N- l)rN-*tjirF$ f q + ih(nrZ) . 

r’ (4.4) 

(From this point on, we consider only the phenomenologically-interesting 

case n=4.) 
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Since v is complex, the conditions (2.13a,b) that determine 

the physical value of r really amount to four conditions: 

$ Rei / 
'phys 

=o 

&Imi/ =0 
rphys 

Ret 
rpW 

=o (4.k) 

Imi 
rphys 

=o (4.5d) 

In the cases we have examined it is not possible to satisfy all 

of these equations simultaneously for any values of r and i. 

In particular, (4.5b) and (4.5d) are equivalent to 

$h(~) = 0 (4.6a) 

h(X) = 0 (4.6b) 

We have verified graphically that these equations fail to be 

simultaneously satisfied for odd N from N = 3 through N = 13 (see 

figures 17 throuqh 28). Thus, for these values of N, the matrix 

element of the metric operator (see eq.(2.11)) is not a real metric 

describing the spacetime M"@SN. A fortiori, there does not exist a 

groundstate 1'0, such that 

IO-> = IO,> = IO> (4.7) 
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and such that the expectation value of the metric 

$8 = <gA$ = <oliABI O> (4.8) 

describes M'*sSN. 

Suppose we choose to view the complex effective potential i' as 

describing an unstable state [20].* That is, we view our spacetime as one 

which, in the distant past, had <gAB> corresponding to M" e SN; 

however, there is a probability per unit time per unit 3-volume of 

<gAB> changing (there is no way to tell from the present analysis what. 

changes are likely). This probability density is given by 

p = -2 Im? . (4.9) 

The value of i depends on both r and n; which r and 12 shall we use in 

(4.9)? The only natural (though not. perhaps, compelling) choice is 

those values of r and i which extremize the real part of i, i.e. the 

solutions to (4.5a) and (4.5~). With suitable fine-tuning of n, 

such "unstable solutions" exist with N = 3, 5, 7, 9, 11, or 13. 

Some of these are described in table 1 and figs. 1 through 15. 

As an example, consider N=7. Fine-tune i to the 

*It is not our aim here to argue that this viewpoint is correct or 
incorrect, but merely to point out the consequences if it is taken. 
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value 

where 

i = 52.930 L 
P ' 

(4.10) 

(4.11) 

is the (n+N)-dimensional Planck length. Then Re? and & Rei are 

both zero at 

r = 1.1100 L 
P. 

(4.12) 

This isalocalminimumof Rev. Since r>i 
P' 

we expect on dimensional 

grounds that the loop expansion we have been employing is a meaningful 

approximation to the exact effective potential [7]. (This is not true for 

all the "unstable solutions" in table 1,) 

G O, the Newton constant of the effective n-dimensional gravitational 

field, is related - at tree level - to the bare (n+N)-dimensional Newton -- 

constant i by 
Go = cljdNy&(y) . (4.13) 

Using (4.3), (4.11) and (4.13), n=4 and N = 7, we find that r is 

larger than the tree level n-dimensional Planck length 

r = 9.1137Lp . (4.14) 

However, it must be borne in mind that loop effects may cause the 

observed physical value of the Newton constant to differ drastically 

from its tree-level value [21,22,41. 
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At the minimum of Re? given b,y (4.19) and (4.12), 

Im? = - 3062.9 (ip)-4 + (4.15) 

If we identify the tree-level Lp in (4.14) with its observed value, 

given in eq.(l.l), we obtain, using (4.9), a rate of decay of the 

M' ,a S' state 

0 = 6125.8 Lp+ 
= 2.2005~10-'L~-~ (4.16) 
= 9.672 xlO”‘cm-‘set-l 

Corresoonding results for other unstable solutions are given in 

Table I.* (No unstable solutions exist in regions where Im?>O, 

corresponding to a "negative decay probability".) 

*We should point out that the instability induced in M' e SN by gravi- 

tons is of a somewhat different nature than that which may occur when 

only scalar and Dirac-spinor contributions to V 
Q 

are taken into account. 

In the scalar-spinor case, a groundstate with M' e SN geometry does 

exist. If the ratio of the number of scalar soecies to the number of 

spinor species does not satisfy certain inequalities, arbitrarily small 

perturbations of the background geometry will give rise to exponentially- 

qrowinq deviations from M'+ @SN [4,38]. However, a state which, at early 

times, has a background metric corresponding to a perfectly unperturbed 

M" @ SN will, with unit probability, be found in a state which also 

looks like M' @ SN at late times. This is not true in the graviton - 
case. 
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However seriously one wishes to take such "unstable solutions", 

the following conclusions may be drawn from our results: 

1) At the one-loop level, a state with <gA8> corresponding 

toMLo SN,N=3 5 , ,..., 13, is not a stable groundstate 

for pure gravity. 

2) The anomalous smallness of the contribution of scalar and 

spinor degrees of freedom to the effective potential on 

M' @ SN is not a feature shared by the contribution of 

gravitational degrees of freedom on this background. In 

table 2 we compare these contributions, in units of r-'. 

For scalars and spinors, this quantity is independent of r; 

for gravitons,valuesare quoted both at r=O (or, equiva- 

lently i = 0 and r arbitrary), and at values of r, i\ 

corresponding to "unstable solutions". 

Both of these conclusions demonstrate that, in studying quantum 

effects in Kaluza-Klein theories, one ignores quantum-qravitational 

effects only at one's peril. 
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What implications do our results have for the construction of 

models with stable Kaluza-Klein background geometries and realistic 

particle spectra? Since a model without fermionic matter is hardly 

realistic, the instability of "pure-gravity compactification" is not 

to be regarded as catastrophic. Indeed, the quantum part of the ef- 

fective potential in eleven-dimensional supergravity has been shown 

to vanish if the background metric is the classical solution with 

anti-de Sitter spacetime as the non-compact sector [23]. The corre- 

sponding analysis for super-gravity in the background MU@ S' is cur- 

rently in progress [24]. 

In addition, the existence of interesting supergravitational theo- 

ries in ten dimensions[25] motivates the extension of our analysis to 

the case of gravity (and, ultimately, supergravity) on M's SN with 

NE. The motivation for restricting N to be odd is to introduce 

as few arbitrary parameters as possible into the effective potential. 

In the present case, the bare (n+N)-dimensional cosmological constant 

i\ is an arbitrary parameter which is fine-tuned in hope of obtaining 

flat M'. With N even there will be an additional term in the effective 

action 

1 A. JdntNz JT?T 
i lnd 

(4.18) 

where the "induced cosmological constant" is an extra fine-tuneahle 

parameter 

Aind = iG, log; t(G) . 
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In a supergravitational theory, n is fixed rather than arbitrary; 

thus, the number of arbitrary parameters in the one-loop effective 

potential need not increase in going from N odd to N even.* Since 

A ind enters the effective potential only through the term (4.18), 

without affecting the "mass eigenvalues" Xi of the graviton modes, 

it should be possible to fine-tune Aind to give vanishing Rev 

at the minimum with comoarative ease. Idhether there exists a 

gravitational or supergravitational model in which all the d,vnamical 

equations (4.5a-d) are satisfied can, of course, only be determined 

by detailed calculation [27]. 

Finally, it should be kept in mind that the instability of pure 

gravity on spheres (or that of superaravity on soheres, should the 

problem arise in that case as well) could be an indication that the 

true groundstate has a different shape than SN. Internal manifolds 

differinq significantly from SN--"squashed" spheres, oroduct mani- 

folds, etc .--are worth examining, not only for this reason. but also 

because their symnetry groups may correspond to those observed in 

Nature [39]. However, it is also of great interest to study arbitrary 

a deformations of S'~, or of other symmetric manifolds [40]. If 

the effective action r of the theory on the symmetric manifold is 

real, knowledge of r in the presence of such deformations is needed 

for a complete analysis of stability against these deformations, as 

well as for a determination of the masses, scatterinq cross sections, 

*This ooint has been noticed independently by E. Myers [26]. 
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and decay rates of ultraheavy (> I/cp) particle states ("pyrgons"). 

Cosmology can place strong constraints on pyrgons [41] and thus help 

to reduce the field of viable Kaluza-Klein theories. 

Perhaps most importantly, we should expect that stable 

internal geometries in a Kaluza-Klein theory will possess ex- 

tremely small deviations from perfect symmetry. Why so? 

Particle masses in Kaluza-Klein theory are determined by the 

spectra of operators on the internal manifold. (This is true 

in the quantum theory as well as in the classical theory; in the 

quantum theory, the relevant metric on the internal manifold is the 

background-field metric rather than the classical metric, and the 

relevant operators are second variational derivatives of the effective 

action rather than the classical action.) Zero mass particles cor- 

respond to zero modes of these operators, and zero modes, in turn, 

generally correspond to symmetries of the internal manifold. Changes 

in the shape of the internal manifold will tend to change the masses 

of all particles, including those of zero mass; in particular, de- 

formations which destroy a given symmetry will tend to give mass to 

zero-mass particles. Thus, in a Kaluza-Klein context, the "hierarchy 

problem"--the problem of how a theory characterized by a larqe mass 

scale (in this case, the Planck mass l/cp) naturally qives rise to 

particles with masses smaller by many orders of maqnitude (electrons, 

quarks, etc.)--is expressed as: klhy does the internal manifold deviate 

by such a -, but yet nonzero amount from a perfectly-symmetric 

form? 
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If the Kaluza-Klein theory is to be of physical relevance, 

it must be capable of generating, without artificial fine-tuning, an 

extremely small dimensionless quantity, the "eccentricity" which 

measures the small deviation from symmetry. In this regard, it is 

encouraging to note that, as seen in table 2*, even the present 

simple model is capable of generating a "hierarchy" of several orders 

of magnitude between the contributions per degree of freedom of dif- 

ferent species to the quantum part of the effective potential. 

*The quantities f(x) and h(A) in the first and second columns Of table 2 

dodependon i,whichis fine-tuned to give flat 114; f(n),h(n),Cj") and ~4s) 

are all completely independent of any fine-tuned parameters, including A. 
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APPENDIX A 

Path Integrals with Negative Eigenvalues 

In studying quantum gravity at the one-loop level by means of the 

path-inteqral method, a ootential problem which arises in a number of 

dimensions is that of negative eigenvalues in the operator's2 which 

appears in the exponent of the integrand. The problem is particularly 

acute if, as is commonly done, the path integral is defined ab initio 

by "Euclideanization", in which physical Lorentz-siqnature spacetime 

is replaced by Euclidean-signature space; one is then faced with diver- 

gent integrals of the form 

-0a 
daj ,-*jaj2 , (A.1) 

one for each mode with an S2 eigenvalue Aj ~0. In flat background 

geometries, negative eigenvalues are associated with the trace of the 

graviton; in curved backgrounds other modes in addition may be asso- 

ciated with negative eigenvalues. (This is the case in M" s SN.) 

To make sense of expressions such as (A.l), some authors fPS.lS,I41 

perform further analytic continuations applying just to the negative- 

eigenvalue modes; namely, they multiply the coefficients of these modes by 

factors of "i". This orescription is not only unoleasantly ad hoc, it 

is also in general ambiguous. Should one let aj+iaj or ai+-iaj?-- 

the two choices yield reqularized effective actions which differ by 

an amount .pronortional to the reqularized number of neqative modes. 

This number is, in general, a function of the background geometry, and 
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therefore cannot simply be discarded as an irrelevant constant in the 

effective action. 

These problems do not arise if we work in the physical Lorentz- 

signature spacetime. No divergent Gaussian integrals are encountered, 

and potential ambiguities involving factors of +i are resolved by use 

of the "-ic rule" (Feynman boundary conditions). The "-ie rule", in 

turn, is in no sense ad hoc, but is a direct consequence of the fact 

that we are computing groundstate-to-groundstate amplitudes of a sys- 

tem in a static background (such as the present case) whose exact 

energy eigenspectrum is assumed to be bounded from below (see appendix 

5). 

For notational simplicity consider a real scalar field 4 in a 

D-dimensional static spacetime of Lorentzian siqnature. The one-loop 

generating functional (also referred to as the "partition function") 

is given by [9,10] 

Z = eis Z. . (A.2) 

S is the classical action, a functional of the background values of ,$ 

as well as (possibly) other quantities , such as an external classical 

source coupled to I$. 
zQ' 

the "quantum part" of the generating func- 

tional, and the object we are concerned with computing, is given by 

ZQ = / DSexpC~ (dDx JT;sT @ $ $1 . (A.3) 

Since we are concerned with groundstate-to-groundstate amplitudes, we 
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perform the path integration in (A.2) over fi configurations of the 

field 4, rather than keeping 4 fixed at some initial and final times 

(see appendix 6). Denote the eigenvalues and orthonormalized eigen- 

functions of j2 by -Aj and Qj, respectively: 

z2aj = -/ljtlj 

IdoX ~ ~j~k = 6jk . 

(A.41 

(A.51 

(If s2 has a continuous spectrum, as it does in the cases we shall 

consider, the discrete notation should be thought of as shorthand for 

a continuum notation in which the Oirac delta function replaces 6 
jk' 

integrals replace sums, etc.). 

Any function of x may be expanded in terms of the $I., 
J 

where the aj are x-independent coefficients. Using (A.4) - (A.61, the 

path integral (A.3) becomes 

ZQ = I3 7 udaj]exp[- ii Akakz] 
j -- 

(A.71 

where u is a constant scale with the dimensions of mass. (The path 

integral measure in (A.7) may be taken as the definition of 11%; in 

any case the Jacobian [29] arising from the change of path-integration 

variahles will be unity to one loop, since the logarithm of this 

Jacobian,which potentially gives rise to an anomaly, is zero in odd 



dimensions [18].) 

Let us write (A.7) as 

where 

z”=nuz. ) 

j J 

Zj = 7 daj exp[- ' ,f a *] . 7 jj 

(A.81 

(A.9) 

Aj is a real number, since ^s2 is a Hermitian operator. (Zj's with 

Aj =O may be discarded as physically irrelevant; see ref.[30]). We 

now evaluate (A.9): 

m 

Zj = 2 ( daj exp[- s Aj j 
0 

a 21 = 7 du u-*[cos(i~~u)-i sin (+ A~u)] o 

=$duu -‘[COS(+ lAj\U) - i6j sin($ lAjl”)l , (A.lO) 

where 

(A.ll) 

Performing the integration in (A.lO) [31], we obtain 

or, equivalently 

-in 

Zj = e B JE Aj-f 

(A.12) 

(A.13) 

where we define 
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argA.=-r , J A.<0 , J (A.14) 

Using (A.13), (A.8) becomes 

-in 

ZQ = n 
T- 

(ue J2n Aj-*) . (A.15) 
j 

Defining the quantum part of the effective potential, VQ, by the relation 

-iV 
ZQ=e Q , (A.I~) 

we have 

VQ = i log; 1 -i llogAj , 
j j 

-jrr 
ii:pevfi . 

(A.17) 

(A.18) 

The sums in (A.17) are divergent and must be regularized; we employ 

the zeta-function method [30,32] to accomplish this. Define, for 

Re s>>O, 

5(s) : 1 A.-S . 
j J 

(A.19) 

For Re s sufficiently large, the sum in (A.19) will converge to an 

analytic function of s. Then (A.17) can be written as 

V. = i log: C(0) + 3 C'(O) , (A.20) 

where thevaluesof c(s) and its derivative C'(S) at s= 0 are obtained 

by analytic continuation of (A.19). 
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Now suppose that the eigenvalues Aj have the same general form 

as the majority of the gravitational eiqenvalues encountered in this 

oaper, i.e., the sum of a continuous oart and a discrete part: 

A . 
J 

+ Aj(ku) = k'k, + Xj , 

where u runs from zero to n-l < D-l, 

(A.21) 

ku'ku = -(k0)2+$.l = -(k,)2+(k1)2+ (kZ)*+*-- + (knml)'. (A.22) 

(The eigenvalues m,(j,k,,), m,(j,ku) which arise from the trace modes 

are not of this form; we shall deal with them separately.) Xj is real 

and nonzero, but may be of either sign, depending on the particular 

mode. The zeta-function is equal to 

where 

c(s) = ;(s, . (d"x (A.23) 

T(s) z I: I J s [-(k,)' + ;.i + Xj]-' . (A.24) 

For nonintegral s the integrand in (A.24), viewed as a function 

of complex k,. has branch points at 

k, = +4x> (A.25) 

If z-2 + hj > 0 (whatever the sign of Xj, this will be the case for 

some values of c) the branch points (A.25) apparently lie directly on 

the contour of k, integration (i.e., the real-k, axis); "apparently", 
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because when we compute a groundstate-to-groundstate amplitude we must 

view the time coordinate as the limit of a slightly complex variable, 

t = lim t(l-ie) , E>O (A.25) 
E'O 

(See appendix B.) The momentum-space zeta function (A.24) should 

therefore be regarded as 

i(S) = lim 1 / -dk- [-(k,)2 
WI” 

+ 7i-Z + 1. - ic] -’ . 
E+O+ j J (A.26) 

This "-ic rule" is, of course, quite familiar [37]. What is imoortant to 

note here is that it applies whatever sign Xj may have. 
* 

Whatever the sign of 2.: + Xj, the branch points in the integrand 

of (A.26) are seen to occur in the upper left and lower right quadrants 

of the complex-k, plane. We are thus free to rotate the contour of 

k, integration counterclockwise by any angle 0 between 0 and r/2, 

without changing the value of the integral. (We must also have Res > i 

SO the contribution at jIko/ + m vanishes.) Choosing 9 = ;, (A.26) 

becomes 

5(S) = lim i lld"k [ko2 t C-i t X. - ie] -' . (A.27) 
P"+ j (2T)” J 

Performing the angular integration in Euclidean n-space, 

55(s) = lim i 1 2 
E'O+ J (4n)n’2r(;) 

da. kn-' (lZ+Aj -ie)-S , (A.28) 

or 

*For kuku + Xe<O it is consistent with (A.14). 
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t(S) = ZJ;+ y&nrrzr j 

(“j _ i,)! - s 

where (see reference [I9], eq. 2.251.11) 

larg[(~j - ic)-lll < r . (A.30) 

Keeping in mind (A.30), (A.29~) can be written as 
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(A.29) 

in(s -$)e(-Lj) 
. (A.31) 

where e(x) is the Heaviside function, 

e(x)=1 , x>o 

=o , xc0 . 

Define yet another zeta-function (the last one!): 

(A.32) 

i(s) z . 
r(s - 3 

(4T;n/2 rlf j 1 IQ; - s . (P.33) 

If; is even, 

5(O) = t(o) (A.34) 

ty(o) = t'(o) - &T 
n 

& 5 e(-'j)"jn'2 . 

2 

(A.35) 

(We can set s=O directly in the final sum in (A.35) because, in the 

problem we consider in this paper, the number of eigenvalues Xj ~0 is 

finite.) Using (A.20), (A.23), (A.34), and (4.35), we find that 

5, = i log;:(O) + $ t*(O) - $ n'2 (A.&j) 

where j, is the quantum effective potential density, 
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VQ = $ . /d"x . (A.37) 

In a similar manner, the action for anticommuting c-number ghost fields [9,10] 

n Ji, 

‘gh = : i dDx.;i ^s n 
gh 

(~.38) 

gives rise to the quantum effective potential density 

;gh = -2 log&gh(o) - ii&(o) 

,. 
where the eigenvalues of snh are ikuku + X .I, and* 

9hJ 

(4.39) 

(A.40a) 

d"k [(kuku)* 
h)” 

+ 2(kuk )X u ghj + (Aghjy1-s’2 

= (4T;n,2 qg.p's lhghjln'2 - s . 

(A.40b) 

(A.40~) 

Let us now consider the trace eigenvalues ml(j,ku) and m2(j,ku). Since these 

are defined to be the eigenvalues of the Hermitian matrix %(j,ku) (see eqs.(2.41), 

(2.42)). they are both real numbers, so the analysis which leads to eq.(A.lS) ap- 

plies to them as murh as to any other eigenvalues. The trace modes thus contribute 

to ZQ in eq.(A.15) a factor which may be written as 

ZTR ’ j’k u2e - ’ (Z’n)Cy(j ,kU)m2(j,kFi)l-1’2 
‘P 

Neither ml(j,ku) nor m2(j,ku) is of the form (A.21). However, their product is 

equal to a product of factors linear in kuku: 

l 
The absolute value of the integrand appears in (A.40aj because the ghost action comes 
from exponentiation of a functional Jacobian, i.e., the absolute value of a functional 
determinant. 
ghost case. 

No term like the third- the R.H.S. of eq.(A 36) occurs in the 
We are grateful to S. MacDowell for pointing this out to A. Chodos, who 

pointed it out to US. To obtain (A.40~). from (A.40b), use ref.[42], keeping in mind 
the "-ic" rule. 
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-iir 

'TR = j nk u * eT2n)(w)-i(kLkD + F,j)“(kUk * -& 
ii 

' " 

+ ~,j) 

(4.42) 

(cj is defined in eq.(2.48).) The contribution of the trace modes to 

the effective potential density is therefore 

iTR = iDo ; - i 10g(*Il[510 t 
(0) ttIo (o)] + $- Eio 

t 
(0) tiio (9)l 

(A.43 

where 

&J+(S) z ; j f$, t--b,)’ + 2-i; t q-s 

and 

sloJs) 3 i / J 5 [-(k,)' + i*;; + $I-' . 

(A.44) 

These zeta-functions are similar to (A.24), exceot that Sj, 5; 

have nonzero imaginary parts for any finite value of r. Whether or 

not one takes care to follow the "-ie rule", the k,-integrand in ; 10+(s) 
has branch points in the upper left and lower right quadrants of 

the complex-k, plane, while cl0 (s) has branch points in the upper 

right and lower left quadrants. As before, we can simplify the 

k,-integrals by analytic continuation --i.e., by moving the contour 

of k,-integration in such a way that the value of the integral is 

unchanged. However, the allowed motions of the contour are now dif- 

ferent forilois) andilo(s) due to the different locations of the branch 

points. The most convenient choices are 

Slot(s) : k, + ik, 

ilO (5) : k,+-ik, 

(A.46) 

(A.47) 



- 47 

so 

~lO+(S) = i ; i g+ [(k,)* 
7T 

t 2 + q-s 

tlo-(s) = -i 5 j j-f+ [(k,)' 
T 

t$ t Ej]-S 

or, upon performing the ku-integration, 

;lo+w = . 
(4& 

r(sr-sn/2) 1 (c;jF-s 

j 

GO 
(5) ;'*wj (Ej)'-' . 

(~.48) 

(A.49) 

(A.50) 

(A.51) 

Since the sj's are complex numbers whose phases depend continuously 

on r and i, it turns out to be convenient to use (A.50), (A.51) directly 

in the expression (A.43) for the effective potential density, rather 

than express (A.50), (A.51) in a form analogous to (A.31) - (A.35). 

k!e see that, at least at the one-loop~level and with the back- 

ground geometry M" @ SN, it is possible to calculate the effective 

potential without ad hoc Euclideanization and its attendant difficul- 

ties. One may ask: In what way, if any, does the effective potential 

calculated in this manner differ from the effective potential calculated 

with Euclideanization? 

A Euclideanized calculation of the effective potential for 

gravitons on M' a SN has been performed by Chodos and Myers [17,33]. 

Their Euclideanization is equivalent to replacing, in all zeta-functions, 

k, by +ik,. As we have seen, this is - with one exception! - precisely -- 

what one does if one stays in Lorentzian soacetime and oerforms 
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mathematically valid analytic continuations of contours in momentum inteqrals, 

keeping in mind that one is comouting a vacuum-to-vacuum amolitude ("-is 

rule"). The exception is the trace mode zeta function <IO (s). Analytic 

continuation from Hinkowski spacetime yields the factor of 'l-i" in eq.(A.51); 

workinq in Euclideanized space would have the net effect of reolacinq 

the "-i" in (A.51) by "ti". Thus, the Euclidean version of the calcu- 

lation can yield results which differ from those obtained by a Lorentzian - 

calculation. 

In our notation, the result of Chodos and Myers for the quantum 

part of the effective potential density may be written as 

iCM = fCM(A) + 
i hCM(X) 

r" r" 
(A.52a) 

where 

f&) 

r" 
= ; c .f c:(o) 

J=l J 
+ 510,(O) - Cl0 (011 - i (A.52b) 

-- 

* [,E, di(n) Li: D ~(L)(N(v) ,Ji) IL2 -vi2jn’2 1 
i 

(A.52~) 

in contrast with the Lorentzian result v. (eqs.(4.la-c)). The physics 

of VCM differs both qualitatively and quantitatively from that of ?q. 

For example, for odd N from 3 through 11, icM has no "unstable solu: 

tions" [33], whereas iO does (see section IV). For N= 13 both have 

unstable solutions, but with different radii. 
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In addition to the question of Euclideanization, the calculation 

of Chodos and Myers differs from ours in a purely technical aspect: 

the two calculations use very different methods to analytically con- 

tinue the individual zeta-function sums to the physical region s s 0. 

If both methods are mathematically correct, then we should obtain 

Chodos and Myer's results for the total effective potential q simply 

by replacing (4.la-c) with (A.52a-c). We have verified that this is, 

in fact, the case. For example, compare fig. 41 with fig. 4 of 

ref.[33]. 

In the absence of any relevant experimental data in the realm 

of quantum gravity*, there seems to be no way of determining whether 

it is the Lorentzian or Euclidean procedure which yields physically 

correct results in cases where they disagree. Certainly, one may 

supplement one's theory with the postulate that quantum effects be 

calculated by EuclideaniTation, and proceed from there to obtain re- 

sults which are mathematically correct. ** These results must still be 

interpreted in Lorentzian spacetime, since all available data show 

quite clearly that our world is, not Euclidean, but Lorentzian. Given 

this fact, and given that the Lorentzian procedure avoids the ad hoc -- 

aspects of the Euclidean procedure, it seems to us that the Lorentzian 

procedure is to be preferred. 

*We are aware of only one quantum-gravitational experiment which has 
**been performed to dates [34]. 

""If spinor fields are included, topological obstructions may even render 
the Euclidean theory mathematical1 
thank R. Pisarski 

thif! ;i;o;;i;;ent [43]. We would like to 
for poln lng 

t- 
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Groundstate-to-Groundstate Amplitude 

Ir!e review here the path integral formalism for the groundstate- 

to-groundstate amplitude of a system with a time-independent Hamiltonian 

whose spectrum contains a unique state of lowest energy. 

For notational simplicity consider a system with a single degree 

of freedom, corresponding to the SchrGdinger-picture operator ;i. The 

eigenvalues of G are denoted by either q or (1. 1Ne add to the time- 
_ 

independent Hamiltonian H a time-dependent term -J(t)q, where J(t) is 

a time-dependent c-number source which vanishes during all but a 

finite interval of time: 

J(t) # 0 only if t1<t<t2 . (B.1) 

Let lq,t> be the eigenstate of q"(t) in the Heisenberg picture, 

i.e. 

G(t)lq,t> = Q/q-t’ , (8.2) 

and let jEi> be the 1 .th (t' lme-independent) Heisenberg-picture eigen- 

state of the unmodified Hamiltonian i, 

l$Ei > = EilEi> _ (8.3) 

For notational simplicity we shall think of the states jEi> as dis- 

crete; it would make no difference if we were to think of them as a 
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continuum. What fi imoortant is that we shall assume that there 

exists a unique state of lowest energy IEo>, 

E. < Ei Vi f 0 . (8.4) 

Define the generating functional in the oresence of an external 

source, Z[J], as 

z[J] 5 T;t /dQ'dQ <Q-,T'\Q,T>'I , 

T'++m 

(8.5) 

where 

T < tI < t2 < T' , (8.6) 

the integrals are over the entire eiqenspectrum of i, and the suner- 

script “J” is a reminder that the amplitude <Q',T'/Q,T> must be com- 

puted using the modified Hamiltonian ^H - J(t):. Inserting complete 

sets of states, we can write (B.5) as 

ZCJI = ,Jz j dQ’dQds2dql <Q’,T.!q2,t2><q2.t21q~,t~>J<ql’tllQ,J> 
T’+i.m (8.7) 

where (B.l) allows us to drop the “J” suoerscripts from the initial 

and final amplitudes. 
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Z[J] = 1' T+z iij I dQ’dQdq2dql 
T-+tm ' 

= ,Jc ilj/dQ’dQdq2dql 
T*++m ’ 

<Q'IEi>e 
-iEiT' 

<Ei ICI2 *t2 w2’t21ql’tl>J’q l,tllEj'e 
iEjT 

cEjlQ> (8.8) 

where IQ, is the Schrodinger-picture eigenstate of 4. 

Now, evaluate (B.8) as the real-time limit of a system whose time 

coordinate has been rotated through an angle -E in the complex-time 

plane (E 2 0): 

lim Z[J] = lim 
E%+ 

<Q’I Ei>e 
-iEiT' 

cEi192St2><423t21919 1 t >J<ol,tIIEj>e 
iEjT 

<Ej I Q> 

(B.9) 

In the limit T+ -(l-ic)m, T'+t(l-ic)m, all the terms in the double 

sum in (B.9) for which Ei#Eo and E,j #E. will be exponentially small 

compared to the single term i=j =0, and may be ignored: 
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lim Z[J] = lim 
i 

lim 
E+O+ s+o + T+-( l-iE)m 

i dQ’dQdq2dql 
T'++(l-iE)m 

~0'1 Eo>e 
-iEOT' 

<EO/q2,t2><02't21ql,tt>J,ql'tl/Eg>e 
iEOT 

<EOI 4> 

= lim [(dq2dql<Eolq2,t2><q2,t~lq~,t~>J,ql’tllE~>l 
E-l+ 

lim 
' T+-(1-iE)m 

[(dQ'dQ<Q'!EO>e 
-iEOT' 

eiEoT <EOt Q>l 
T-++(I-is)= 

= <EOIEO>J 

. lim lim jdQ'dQ<Q'lEo>e 
-iEOT' 

ei EoT <EOI Q> 
E-Qt T+-(1-ic)m 

T'+t(l-i,)m 

(B.10) 

We can add back the i #O, j #0 terms to (B.lO) for the same reason we 

could remove them in the first place: 

;x Z[J] = <EOIEO> J lim J 1. (dO'dQ<Q'IEi>e 
-iEiT iE.T 

t EW+ lT+!{?l-iE )- i ,J 
e J <EjlQ> 

T'++(t-ic)m 

= <EOIEO>J lim T l[~-~~) f jdQ'dQ<Q',T'IEi"EiI"lT' 

E+ot T'z;(l-i$ 

= <EOIEO' J lim lim fd@'dn<?',T'IO,T> . (B. 11) 
PO+ 
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Comparinq (B.11) with the definition (B.5), we conclude that the 

groundstate-to-groundstate amplitude in the presence of an external 

source is given by 

lim Z[J] 
E+O+ 

<EO/EO>' = lim ' 
E-v+ 

(B. 12) 

In terms of path integrals, Z[J] can be written (provided k is 

quadratic in the canonical momentum) as 

+(I-ic)m 
Z[Jl = lim (as exp(iS[q(t)l + i ( dt J(th(t)) , (8.13) 

E”0 -(I-ic)m 

where t is complex, 

t = (l- ie)r , T real , (B.14) 

and where the path integral is over all possible paths q(t), with no - 

restrictions on the values of q(t) at t+i:(l-ic)m. (S[q(t)l is the 

classical action, a functional of the oath a(t)). 

The foregoing material is, auite likel.y, familiar to the reader, 

and has been presented in essentially identical form in refs. [9,35]. 

Our ourpose in repeating it here is to remind the reader that the 

rule 

t + (1-ic)t (B.15) 

applies whenever the quantum system under consideration has 
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1) a Hamiltonian not explicitly dependent on t and 2) a unique 

groundstate. The system we consider in this paper --small qravitational 

fluctuations about Fl"@ SN--satisfies (1) by inspection, and (2) by 

ansatz. (See discussion in section IV.) In particular, the fact that 

the bare Lagrangian of our system has tachyonic eigenvalues 

kuku + Xj , Xj<O ) (8.16) 

and "wrong-sign" eigenvalues 

- (kuku + Xj) (8.17) 

makes no difference. 

We shall not repeat here the analysis [9,10] which leads from Z[Jl 

to the effective action r, or the expression for r in the one-looo 

approximation, except to remind the reader that the condition (2.10) 

is independent of the loop expansion. 
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APPENDIX C 

Values of Various Quantities 

v=l : 

;1,o = 1 ; 
,41,-l = -2 , A;l,o = 2 ; 

$,,-l = -8 I ;,,, = 2 . 

v=2 : 

;2,0 = - & I $1 = & ; 

;,,, = - + , $1 = : ; 

$2,o=-y’ t2,*= g . 

v=3 : 

;4,3 =&- ; 

;4,3 =A ; 

;4,3 = & ’ 
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v=5 : 

CR gj-& ; a&!- ; as2+y). 

;5,o = a50x 576 , + = -a,,~820 , ;s,2 = as0X 273 , 

A- = -a5ox3O , A 
05'3 05,4 = %o ; 

;5,0 = %l" 1,800 , ;s,l = -41~2,522 , p;5,2 = as,x798 , 

A,5,3 = -41x78 3 ;,,, = g, ; 

;5,0 = aj2x 1,296 , ;5,1 = -a52~1,800 , ;5,2 = a52~ 553 , 

t5.3 = -a52x 5o ' ;5,4 = a52 * 

v=6 : 

(‘(j,, -& ; 0161 ‘47 ; 

A,6,0 = -cyox 28,800 , ;6,1 = a60~ 42,152 , ;6,2 = -a60X15,290 , 

;6,3 
= CT+,-,x2,046 , A 06,4 = -OL60x110 , ;6,5 = 2x"60 ; 

;6,0 = -OL~~X 20,736 , A6 1 ' 1 = e61" 30,096 9 * 16,2 = -a61x 10,648 , 

;6,3 = a61~ 1,353 , A 16,4 = -"61x 66 , $5 ='61 ; 

3,O 
= -"62x 28,224 , A 26,1 = 11~~~40,756 , ;,,, = *62x 14,192 , 

$2 
= cis2X 1,743 , $4 = -"62'79 9 $5 = “62 . 
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c+(n) = d2(n) = d3(n) = d7(n) = d8(n) = 1 ; 

d4(n) = d5(n) = dg(n) = n ; 

d6(n) = 9 - 1 ; 

dlor(n) = + 1 . 

El: 
Ji 

Jl=2 ; 

J2 = J4 = J7 = 1 ; 

J3 = J6 = J6 = J8 = Jg = Jlo+ = 0 . 

(” : N-1 -2-J ForNz3 , 

Y1* = -39 t 2vth , Y22 = -3Gt4vtltX 

Y32 = -3vz+ 6wth , 
y4 * = -3v2tltIA 

YLj2 = -3vzt2v+ x ) Y(j’ = -3v2 -2vtA 

Y72 = (v+1)2 , YB 
2 = v't4l.l 

Yg2 = v* , 
y10; = -3vzt 2vtXt4v[l - $g&$ 
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I I: Li 

L1 = L2 = L3 = L7 = " t 2 ; 

L4 = L5 = L8 = Lg = " + 1 ; 

L6 = L1o, = ” . 

[~I (IIyi2)1 = {(viz)* vi'}+, [Xl = integer part of x) 

i=l ,..;,9: 

If jlYi211 < Liz: Qi = Li, 9j = Li-l 

If IIyi2/1 = Lit and yi2 > 0: Qi = Lit 1, qi = Li - 1 

If IIyizII = Liz and yi2 < 0: '7: = Li+l, qi =ci-1 

If IjYizII ' Li and (IIYi’II)* f COlyi'l~)'l and yi2>o: 

‘i = [(llYi’II)‘lf I, qi = [(IIYi’/l)+] 

If llYi211 ’ Liz and (Il~.‘ll)~ = [(IIY.~~~)~I and y.* > o: 1 1 1 

Qi = C(IIYi’II)fI+l~ qi = [(jlYi’jj)‘I- 1 

If l~yi2~~ > Liz and yiz < 0: Qi = [IIYi211fI+1> qi = [(\j~i’jl)‘] 

i = 10r : 

If llYIOfII < vi: 010, = v* qlO, 
=v-I 

If lIYlo;Il t v*: Qq= C(Ilv;,~l)f! + 1, 30, 7 ~(lly;o,‘l ,‘I 
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A Guide to the Graviton Graphs 

Figs. 1 - 8: Real part of the effective potential density i for 

each of the "unstable solutions" in table 1. 

Figs. 9-16: Same as 1 - 8, showing the behavior of Rev for large 

and small r. 

Figs. 17-22: h(X) = r"x Imi Q, N = 3,5,..., 13 (with some close-ups). 

Figs. 23-28: Same as 17 - 22, showing the behavior of h(X) for 

hs 0 and h<< 0. 

Figs. 29-34: f(X) = r'xRei Q, N = 3,5,...,13. 

Figs. 35-40: Same as 29 - 34, showing the behavior of f(X) for 

h> 0 and A<< 0. 

Fig. 41: Real part of the "Euclideanized" effective potential 

density, N = 13. 
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